

PLAN NACIONAL SUBSECTORIAL DE VIGILANCIA Y CONTROL DE RESIDUOS DE MEDICAMENTOS VETERINARIOS, PLAGUICIDAS Y CONTAMINANTES QUÍMICOS EN **TEJIDOS DE LA ESPECIE BOVINA 2025**

Grupo del Sistema de Análisis de Riesgos Químicos en Alimentos y Bebidas Dirección de Alimentos y Bebidas INSTITUTO NACIONAL DE VIGILANCIA DE MEDICAMENTOS Y ALIMENTOS - INVIMA

2025

www.invima.gov.co

© (7 © © Invima Colombia Invita Invit

Director General Invima

Instituto Nacional de Vigilancia de Medicamentos y Alimentos - Invima Sede principal: Carrera 10 # 64-28 Bogotá, Colombia Teléfono conmutador: (57)(1) 2425000 contactenos@invima.gov.co

TABLA DE CONTENIDO

- INTRODUCCIÓN
- 2. **OBJETIVOS**
- 2.1 Objetivo General
- 2.2 Objetivos Específicos
- ANTECEDENTES A LO LARGO DE LA CADENA 3.
- NORMATIVIDAD APLICABLE 4.
- METODOLOGÍA DE MUESTREO
- 5.1. Universo (Población)
- 5.2 Diseño de Muestreo
- 5.3 Criterios para la definición de tamaño de muestra
- 5.4. Distribución de las muestras
- 5.5 ANALITOS POR MONITOREAR
- METODOLOGÍA DE MUESTREO OFICIAL
- 6.1. Población y muestra
- 6.2 Criterios para la definición del tamaño de muestra
- 6.3 Selección de establecimientos en planta de beneficio
- 6.4 Unidad de observación estadística
- 6.5 Medidas correctivas
- 6.6. Inspección, Vigilancia y Control con enfoque en riesgo por el INVIMA
- **ANEXOS** 7.
- **BIBLIOGRAFÍA** 8.

1. INTRODUCCIÓN

Los residuos de medicamentos veterinarios, plaguicidas y contaminantes químicos y ambientales representan un riesgo en la inocuidad de los alimentos, ya que se encuentran presentes en el medio ambiente (aire, suelo, agua, forrajes), además de ser adicionados intencionalmente (tratamientos médicos, medicaciones en premezclas y agua de bebida, aspersiones aéreas) y pueden llegar a los tejidos y productos de origen animal, que posteriormente se destinan al consumo humano. Dicha situación generalmente obedece a la contaminación fortuita de los animales, de los alimentos que consumen y del entorno en que habitan, afectando la salud de los consumidores, debido a que los alimentos provenientes de estos animales en algunos casos superan el Límite Máximo de Residuos establecido (LMR), lo que determina que se deben establecer medidas para su prevención, vigilancia y control.

Con base en lo anterior y de acuerdo con sus competencias, el INVIMA ha venido desarrollando desde el año 2009, bajo un enfoque de riesgo, el Plan Subsectorial de Vigilancia y Control de Residuos de Medicamentos Veterinarios y Contaminantes Químicos en productos de origen animal.

En Colombia desde el 2009 se vienen desarrollando los Planes Nacionales de Vigilancia y Control de residuos en Bovinos. A partir del año 2015 y conforme a la lo descrito en la resolución 770 de 2014 del Ministerio de Salud y Protección Social, en la cual, el Instituto Colombiano Agropecuario - ICA y el Instituto Nacional de Vigilancia de Medicamentos y Alimentos - Invima, cada una dentro del desarrollo de sus respectivas competencias y en el ejercicio de sus funciones de Inspección Vigilancia y Control deberán diseñar formular, ejecutar y hacer seguimiento de los Planes Nacionales Subsectoriales de Vigilancia y Control de Residuos en Alimentos (PSVCR) el cual se integran en el Plan Nacional de Vigilancia y Control de residuos en Alimentos (PNVCR). Además, con la ejecución del Proyecto de "Control e inocuidad de alimentos de consumo nacional y exportación bajo enfoque de riesgo", se pretende que con la colaboración del sector privado y del sector público, se adelanten las acciones necesarias para lograr el mejoramiento del estatus sanitario del país y lograr la admisibilidad sanitaria de la carne, elevando la condición sanitaria y con ello, la protección de los consumidores en cumplimiento de los requisitos, estándares y parámetros de los países de destino de las exportaciones.

El Plan Nacional de Residuos - PNR, está dirigido a identificar y cuantificar los residuos de medicamentos y sustancias prohibidas y restringidas que por distintas razones se encuentran en los productos de origen animal. Esta evaluación debe formularse como un conjunto sistemático de procedimientos que aseguren un control efectivo de tales residuos en toda la cadena agroalimentaria.

El PNR además, está ligado a la ejecución de la política nacional en materia de sanidad e inocuidad en de las cadenas agroalimentarias, lo que conlleva a establecer sistemas preventivos de inocuidad y de aseguramiento de la calidad en la producción primaria y programas de desarrollo de proveedores.

2. OBJETIVOS

2.1 Objetivo General

Identificar, cuantificar y monitorear la presencia de los residuos de medicamentos veterinarios, plaguicidas de uso agropecuario y contaminantes químicos que puedan estar presentes en tejidos crudos de la especie bovina utilizados para consumo humano, en las plantas de beneficio de la especie bovina abiertas y con inspección permanente de Invima en todo el territorio nacional.

2.2 Objetivos Específicos

- Formular el Plan de Residuos Medicamentos Veterinarios, Plaguicidas y Contaminantes Químicos para tejidos crudos de la especie bovina que son sacrificados en plantas de beneficio animal para esta especie abiertas, autorizadas por el Invima y con inspección oficial permanente.
- Definir los criterios para la priorización y selección de sustancias a monitorear, con base en las exigencias nacionales e internacionales y el uso, restricciones y prohibiciones en el país para la carne y tejidos crudos comestibles de la especie bovina con destino a consumo humano.
- Realizar el seguimiento mediante vigilancia basada en riesgo de los residuos de medicamentos veterinarios plaguicidas y contaminantes, que se identifiquen en las muestras tomadas.
- Generar insumos que promuevan las buenas prácticas de producción primaria y transformación de la carne bovina con destino a consumo humano, garantizando que esta es inocua para la población colombiana y, además favorecer el acceso a nuevos mercados.

3. ANTECEDENTES A LO LARGO DE LA CADENA

La presencia de residuos de medicamentos, plaguicidas y contaminantes ambientales en los alimentos de origen animal es motivo de preocupación para los consumidores y las instituciones de vigilancia y control por lo que puede representar en salud pública, tanto en el ámbito nacional como internacional.

Es así como en Colombia el Consejo Nacional de Política Económica y Social, en el documento CONPES 3375 de 2005, (Política nacional de sanidad agropecuaria e inocuidad de alimentos para el sistema de medidas sanitarias y fitosanitarias), adicionado con el documento CONPES 3376 de 2005 (Política sanitaria y de inocuidad para las cadenas de la carne bovina y de la leche) estableció los lineamientos

www.invima.gov.co

Línea anticorrupción: (601) 242 5040 denunciasanticorrupcion@invima.gov.co

encaminados a mejorar el estatus sanitario y la inocuidad de los alimentos en dichas cadenas productivas, con el fin de proteger la salud y vida de las personas, preservar la calidad del ambiente, mejorar la competitividad en el procesamiento nacional y aumentar la capacidad para lograr su admisibilidad en los mercados internacionales mediante diferentes acciones interinstitucionales con el apoyo del sector privado.

En el marco relatado anteriormente, y de acuerdo con sus competencias y capacidades, el INVIMA ha venido desarrollando desde el año 2009, el Programa Subsectorial de Vigilancia y Control de Residuos de Medicamentos Veterinarios y Contaminantes Químicos en productos de origen animal, especialmente en carne bovina, contemplando para ello la ampliación del monitoreo progresivamente, bajo un enfoque de riesgo.

En el año 2014, los Ministerios de Agricultura y Desarrollo Rural y de Salud y Protección. Social expidieron la Resolución 770 de 2014, "Por la cual se establecen las directrices para la formulación ejecución seguimiento y evaluación de los Planes Nacionales Subsectoriales de Vigilancia y Control de Residuos en Alimentos y se dictan otras disposiciones" y el INVIMA con el fin de dar cabal cumplimiento a esta disposición, desarrollará el presente plan bajo el esquema así reglamentado.

Adicional a lo anterior, teniendo en cuenta los resultados de residuos de medicamentos veterinarios (Avamectinas, Benzimidazoles, Clortetraciclina, Testosterona), plaguicidas (Cipermetrina) y contaminantes (Zearalenona) obtenidos en el desarrollo del plan del año 2024 en carne y tejidos crudos comestibles de la especie bovina con destino a consumo humano, se hace necesario mantener la vigilancia sobre la presencia de residuos de medicamentos, plaguicidas y contaminantes en los establecimientos competencia del Invima.

4. NORMATIVIDAD APLICABLE

Ley 100 de 1993 Por la cual se crea el sistema de seguridad social integral y se dictan otras disposiciones.

Ley 101 de 1993 de Desarrollo Agrícola y Pesquero. El ICA es la entidad responsable de minimizar los riesgos sanitarios, alimentarios y ambientales provenientes de la utilización de los medicamentos veterinarios y otras sustancias químicas en salud y producción animal.

Ley 914 de 2004 Por la cual se crea el Sistema Nacional de Identificación e Información del Ganado Bovino".

Decreto 1500 de 2007. Establece el reglamento técnico y crea el Sistema Oficial de Inspección, Vigilancia y Control de la Carne, Productos Cárnicos Comestibles y Derivados Cárnicos Destinados para el Consumo Humano y los requisitos sanitarios y de inocuidad que se deben cumplir en su producción primaria, beneficio, desposte,

desprese, procesamiento, almacenamiento, transporte, comercialización, expendio, importación o exportación.

Decreto 4765 de 2008. El ICA a través de la Dirección Técnica de Inocuidad e Insumos Veterinarios tendrá dentro de sus funciones: mantener un sistema de comunicación con las autoridades sanitarias responsables de los otros eslabones de la cadena alimentaria con el fin de establecer acciones de mejoramiento de la inocuidad. Coordinar con la dependencia correspondiente el uso de estrategias de comunicación del riesgo para mejorar las prácticas asociadas al mejoramiento de la inocuidad. Coordinar la realización de acciones conjuntas con los productores, comercializadores, exportadores, importadores y otras autoridades, dirigidas a garantizar la inocuidad de los productos de origen animal. Ejercer el control técnico-científico para la obtención de productos inocuos en las cadenas agroalimentarias de producción animal primaria, para prevenir riesgos biológicos y químicos que puedan afectar la salud humana, animal y contribuir a la seguridad alimentaria.

Decreto 1362 de 2012. Del Ministerio de Agricultura y Desarrollo Rural. Por el cual se crea la Comisión Nacional Intersectorial para la Coordinación y Orientación Superior del Beneficio de Animales Destinados para el Consumo Humano.

Decreto 539 de 2014. Del Ministerio de Salud y Protección Social, Por el cual se expide el reglamento técnico sobre los requisitos sanitarios que deben cumplir los importadores y exportadores de alimentos para el consumo humano, materias primas e insumos para alimentos destinados al consumo humano y se establece el procedimiento para habilitar fábricas de alimentos ubicadas en el exterior.

Decreto 1071 de 2015. Por medio del cual se expide el Decreto Único Reglamentario del Sector Administrativo Agropecuario, Pesquero y de Desarrollo Rural.

Resolución 2906 de 2007. Del Ministerio de Salud y Protección Social. Por la cual se establecen los Límites Máximos de Residuos de Plaguicidas -LMR- en alimentos para consumo humano y en piensos o forrajes.

Resolución ICA 1326 de 1981. Disposiciones para la utilización y comercialización de productos antimicrobianos de uso veterinario, entre ellas la no asociación de sustancias bactericidas con bacteriostáticas, la no aceptación de mezclas de antimicrobianos y vitaminas y la prohibición del uso de cloranfenicol.

Resolución ICA 1966 de 1984. Reglamenta el uso de productos o sustancias antimicrobianas como promotores de crecimiento o mejoradores de la eficiencia No se aceptan como promotores de crecimiento o mejoradores de la eficiencia alimenticia los productos o sustancias antimicrobianas que se utilicen con fines terapéuticos en Medicina Humana. En una misma especie animal, no se aceptan como promotores de crecimiento o mejoradores de la eficiencia alimenticia, aquellos productos o sustancias antimicrobianas que se utilicen con fines terapéuticos en dicha especie.

Resolución ICA 1082 de 1995. Prohíbe el uso y comercialización de la Furazolidona, la Nitrofurazona y la Furaltadona para uso animal.

Resolución ICA 1056 de 1996. Control técnico de productos veterinarios, registro de medicamentos veterinarios y alimentos medicados para animales.

Resolución ICA 00961 de 2003. Prohíbe la administración oral de la Violeta de Genciana en los animales.

Resolución ICA 991 de 2004. Prohíbe el uso y comercialización del Dimetridazol para uso animal.

Resolución ICA 969 de 2010. Por medio de la cual se prohíbe el uso y comercialización Olaquindox para cualquier especie animal.

Resolución ICA 2638 de 2010. Por medio de la cual se prohíbe la importación, producción, comercialización o tenencia como materia prima o producto terminado de Dietilestilbestrol (DES).

Resolución 1382 de 2013. Del Ministerio de Salud y Protección Social, Por la cual se establecen los Límites Máximos para residuos de medicamentos veterinarios en los alimentos de origen animal, destinados al consumo humano.

Resolución 240 de 2013. Del Ministerio de Salud y Protección Social. Por la cual se establecen los requisitos sanitarios para el funcionamiento de las plantas de beneficio animal de las especies bovina, bufalina y porcina, plantas de desposte y almacenamiento, comercialización, expendio, transporte, importación o exportación de carne y productos cárnicos comestibles. Resolución 4506 de 2013. Del Ministerio de Salud y Protección Social, Por la cual se establecen los niveles máximos de contaminantes en los alimentos destinados al consumo humano y se dictan otras disposiciones

Resolución 5296 de 2013. Del Ministerio de Salud y Protección Social, Por la cual se crea la lista de establecimientos y/o predios con hallazgos de excesos de residuos o contaminantes en los productos alimenticios destinados al consumo humano y se dictan otras disposiciones.

Resolución 770 de 2014. Por la cual se establecen las directrices para la formulación, ejecución, seguimiento y evaluación de los Planes Nacionales Subsectoriales de Vigilancia y Control de Residuos en Alimentos y se dictan otras disposiciones.

Resolución 0719 de 2015. Por la cual se establece la clasificación de alimentos para consumo humano de acuerdo con el riesgo en Salud Pública

Resolución ICA 068167 de 2020. Por medio de la cual se establecen los requisitos para obtener la certificación en Buenas Prácticas Ganaderas BPG en la producción de carne de bovinos y/o bufalinos.

Resolución ICA 99933 de 2021. Prohíbe la importación, fabricación, registro, comercialización y uso de medicamentos veterinarios como productos terminados y aditivos empleados en la elaboración de alimentos para animales, que en su composición garantizada declaren contener como ingrediente el arsénico o compuestos arsenicales.

Resolución ICA 10003 de 2024. Prohíbe en el territorio nacional la importación, fabricación, registro, comercialización y uso de polimixina E (colistina) y polimixina B en cualquiera de sus formas químicas en especies animales.

Como referentes internacionales se tomaron en consideración las recomendaciones internacionales del Codex Alimentarius en el documento DIRECTRICES PARA EL DISEÑO Y LA IMPLEMENTACIÓN DE PROGRAMAS NACIONALES REGLAMENTARIOS DE ASEGURAMIENTO DE INOCUIDAD ALIMENTARIA RELACIONADOS CON EL USO DE MEDICAMENTOS VETERINARIOS EN LOS ANIMALES DESTINADOS A LA PRODUCCIÓN DE ALIMENTOS- (CAC/GL 71-2009) y otros documentos, tales como:

- Programa Nacional de Residuos (PNR) del Servicio de Inspección y Seguridad Alimentaria (FSIS) del Departamento de Agricultura de los Estados Unidos.
- Reglamento (CE) 396/2005 del Parlamento Europeo y del Consejo.
- Reglamento de la Comisión 37/2010 de la Unión Europea.
- Reglamento (UE) 2017/625 del Parlamento Europeo y del Consejo.
- Reglamento delegado 2022/1644 de la Comisión Europea.
- Reglamento de ejecución 2022/1646 de la Comisión Europea.
- Reglamento (UE) 2023/915 de la Comisión

5. METODOLOGÍA DE MUESTREO

5.1. Universo (Población)

El universo para la formulación del Plan Nacional Subsectorial de Vigilancia y Control de Residuos de Medicamentos veterinarios, plaguicidas y contaminantes en tejido de la especie bovina, está conformada por el número de bovinos sacrificados a nivel nacional en plantas de beneficio abiertas y autorizadas por el Invima para la especie.

Para la selección de las plantas incluidas en el plan de muestreo de la vigencia 2025, se tienen en cuenta los elementos técnicos con enfoque de riesgo, construidos entre la Dirección de Operaciones Sanitarias y la Dirección de Alimentos y Bebidas del Invima. Para el año 2024 entre enero y diciembre se sacrificaron 3'225.606 bovinos de diferentes categorías en Colombia (Encuesta de Sacrificio de Ganado- ESAG DANE, 2025).

5.2 Diseño de Muestreo

El diseño del plan de muestreo cuenta con algunos elementos metodológicos planteados está basado en por la Unión Europea en normativas vigentes de la comunidad europea, tales como:

-REGLAMENTO DELEGADO (UE) 2022/1644 de la COMISIÓN de 7 de julio de 2022 de la Unión Europea "por el que se completa el Reglamento (UE) 2017/625 del Parlamento Europeo y del Consejo con requisitos específicos para la realización de controles oficiales del uso de sustancias farmacológicamente activas autorizadas como medicamentos veterinarios o como aditivos de piensos, y de sustancias farmacológicamente activas prohibidas o no autorizadas y sus residuos".

-REGLAMENTO DE EJECUCIÓN (UE) 2022/1646 DE LA COMISIÓN de 23 de septiembre de 2022 "relativo a disposiciones prácticas uniformes para la realización de controles oficiales en lo que respecta al uso de sustancias farmacológicamente activas autorizadas como medicamentos veterinarios o como aditivos de piensos, y de sustancias farmacológicamente activas prohibidas o no autorizadas y sus residuos, sobre el contenido específico de los planes nacionales de control plurianuales y disposiciones específicas para su preparación"

Así mismo, se han tenido en cuenta otros referentes internacionales como el FSIS1, con algunos elementos de referencia de la Directiva 100,80.2 MUESTREO Y ANÁLISIS DE RESIDUOS BAJO EL PROGRAMA NACIONAL DE RESIDUOS PARA PRODUCTOS DE CARNE Y AVES DE CORRAL.

Para la formulación del presente plan, se utiliza un modelo de muestreo por conveniencia².

5.3 Criterios para la definición de tamaño de muestra

Una muestra representa a un bovino seleccionado de un lote de sacrificio.

De acuerdo con lo establecido en el REGLAMENTO DE EJECUCIÓN (UE) 2022/1646 de 23 de septiembre de 2022 relativo a disposiciones prácticas uniformes para la realización de controles oficiales en lo que respecta al uso de sustancias farmacológicamente activas autorizadas como medicamentos veterinarios o como aditivos de piensos, y de sustancias farmacológicamente activas prohibidas o no autorizadas y sus residuos, sobre el contenido específico de los planes nacionales de control plurianuales y disposiciones específicas para su preparación para la especie bovina, la frecuencia de muestreo debería ser mínimo del 0,25 % de los animales sacrificados (un mínimo del 25 % de las muestras deben tomarse de animales vivos de la explotación y un mínimo del 25 % deben tomarse en el matadero) para las sustancias del grupo A³.

Para las sustancias del grupo B, el mismo documento relaciona que como mínimo el 0,10 % de los animales sacrificados deben ser muestreado.

³ Anexo I REGLAMENTO DE EJECUCIÓN (UE) 2022/1646

www.invima.gov.co

Línea anticorrupción: (601) 242 5040 denunciasanticorrupcion@invima.gov.co

¹ FOOD SAFETY AND INSPECTION SERVICE- USDA

² El muestreo por conveniencia es una técnica de muestreo no probabilístico y no aleatorio.

Ahora bien, teniendo en cuenta que en 2024, el número de bovinos sacrificados, de acuerdo con la Encuesta de Sacrificio de Ganado del DANE en las plantas de beneficio a nivel nacional, fue de 3'225.606 entre enero y diciembre, y conforme a las capacidades analíticas y operativas del Invima, para dar cumplimiento con lo establecido en la Resolución 770 de 2014 en lo que respecta a carne de origen bovino, es de máximo 899 muestras tomadas en plantas de beneficio animal de la especie bovina abiertas y autorizadas por el Invima.

De este total de muestras, 15 se destinan al modelo de muestreo dirigido para realizar la vigilancia y acciones tomadas por lo establecimientos (predios de producción primaria y plantas de beneficio) frente a los resultados no conformes obtenidos en 2024.

5.4. Distribución de las muestras

Al realizar la revisión del censo de plantas de beneficio bovino abiertas y autorizadas, tomando como variable auxiliar el volumen de sacrificio anual del año 2024, se realizó la estratificación de 53 plantas de beneficio animal, en cuatro (4) estratos, teniendo los siguientes límites de sacrificio:

Tabla 1. Límites de los estratos según volumen de sacrificio.

Grupos	Límites de sacrificio (Animales/año)	Número de plantas de beneficio
Grupo 1	< o igual a 42.960	7
Grupo 2	42.961- 993.192	31
Grupo 3	993.193- 1'149.000	10
Grupo 4	> 1'149.001	5

Fuente: Elaboración INVIMA

Para la estratificación se empleó el algoritmo de Lavallee-Hidiroglou⁴, utilizando la librería stratification (Rivest & Baillargeon, 2017) del programa R (R Core Team, 2017), definiendo los estratos con un coeficiente de variación del 0.05 utilizando como información auxiliar del volumen de sacrificio anual.

Para la afijación de la muestra en el diseño estadístico por cuotas, se utilizó la afijación por potencia (Bautista, 1998) utilizada en el diseño estadístico estratificado, con el fin de disminuir el impacto de una afijación de muestra en estratos o grupos con volúmenes de beneficio muy grandes y muestra muy pequeña para estratos o grupos con volúmenes muy bajos. El cálculo consiste en la siguiente fórmula:

⁴ El algoritmo de Lavalle-Hidiroglou (Lavallée & Hidiroglou, 1988) permite estratificar usando estratificación óptima por corte para una población con variable asimétrica. Esté método permite definir los límites de estratificación óptimos fijando el número de estratos o el coeficiente de variación deseado para estimar un total asociado a una variable de interés, de tal modo que el tamaño de muestra sea mínimo.

$$n_h = n \frac{t_{x_h}^{\alpha}}{\sum_{h=1}^{L} t_{x_h}^{\alpha}}$$

Donde:

 t_{x_h} : Es el total del volumen de sacrificio en el estrato h.

 α : Es la potencia de la afijación. (Este nivel va de $0 \le \alpha \le 1$)⁵

n. Es el tamaño de la muestra para la molécula estudiada.

Para el presente diseño se utilizó un α=0.549

Los cálculos, para la afijación de cada estrato o grupo son los siguientes:

Tabla 2. Muestras por estratos

Estratos	n_h	%
1	69	8%
2	237	26%
3	262	29%
4 ,	316	32%
Muestras aleatorias	884	98%
Muestras dirigidas	15	2%
Total Plan	899	100%

Fuente: Elaboración INVIMA

Para seleccionar las plantas según los resultados anteriores, se realiza una selección utilizando el algoritmo de m selecciones en cada uno de los estratos. Este algoritmo consiste en lo siguiente: (Gutierrez, 2016):

- Separa la población en L estratos mediante la variable de estratificación.
- En cada estrato, seleccionamos una muestra con reemplazo, utilizando el algoritmo de m selecciones, el cual consiste en lo siguiente:
 - Seleccionar un primer elemento con probabilidad $\frac{1}{N_h}$ de todo el conjunto de elementos en el estrato h.
 - Seleccionar un segundo elemento con probabilidad $\frac{1}{N_h}$ de todo el conjunto de elementos en el estrato h.

⁵ Si α=1, la afijación de potencia coincide con la afijación proporcional al volumen total de sacrificio, si α=0, la afijación es igual en todos los estratos.

Seleccionar un m-ésimo elemento con probabilidad $\frac{1}{N_h}$ de todo el conjunto de elementos en el estrato h.

Cada uno de los L estratos la selección es realizada de manera independiente.

5.5 ANALITOS POR MONITOREAR

En la fase de diseño y formulación del presente plan se utilizó como modelo para definir los grupos de sustancias a analizar de los anexos I al IV del REGLAMENTO DE EJECUCIÓN (UE) 2022/1646 de 23 de septiembre de 2022, los cuales contienen los grupos de sustancias con efecto anabolizante, medicamentos veterinarios, contaminantes químicos y ambientales que deben ser analizados, así como el tipo de animales, y tipos de productos animales de origen primario.

Para la vigencia 2025 se programa el análisis de los siguientes grupos de sustancias en tejido de la especie bovina:

Tabla 3. Grupos de sustancias y tejidos a analizar

Grupo	Sustancia	Tejido
A1a	Estilbenos	Hígado o músculo
A1c	Esteroides	Hígado o músculo
A1d	Lactonas del ácido resorcílico) incluido el Zeranol)	Hígado o músculo
A1e	Beta-agonistas	Hígado
A2a	Cloranfenicol	Músculo
A2b	Nitrofuranos	Músculo
A2c	Nitroimidazoles	Músculo
A3b	Productos fitosanitarios y biocidas no autorizados (Violeta de genciana)	Músculo
A3c	Sustancias antimicrobianas no autorizadas (Olaquindox, Polimixina B, Polimixina E (Colistina)	Músculo
	Aminoglucósidos	Músculo
B1a	Macrólidos y Lincosamidas	Músculo
Sustancias	Betalactámicos	Músculo
antibacteriales	Tetraciclinas	Músculo
	Quinolonas	Músculo

www.invima.gov.co

Línea anticorrupción: (601) 242 5040 denunciasanticorrupcion@invima.gov.co

Grupo	Sustancia	Tejido
	Sulfonamidas	Músculo
	Fenicoles	Músculo
	Bacitracina	Músculo
B1b	Antihelmínticos (Avamectinas) benzimidazoles)	Hígado
מום	Antihelmínticos (Benzimidazoles)	Músculo
B1d	Antiinflamatorios no esteroideos (AINEs)	Músculo
Бій	Corticoesteroides y glucocorticoides	Músculo
B2	Coccidiostatos e histomonostatos autorizados	Músculo
OrgCl	Plaguicidas organoclorados	Grasa
OrgP	Plaguicidas organofosforados	Músculo
CMT- PTD	Carbamatos y Piretroides	Músculo
MP	Metales pesados: Cadmio	Músculo
Mic	Micotoxinas	Hígado

Elaboración: Invima 2025

La información requerida en el punto 6.10 de la Resolución 770 de 2014 relacionada con Grupo de sustancias, método analítico, límite de detección, nivel de acción y matriz analizada (tejido) se encuentra especificada en el anexo 1 del presente documento, *Templete muestras asignadas y sustancias a analizar*, de acuerdo con el modelo del Reglamento 1644/2022 CE y 1646/2022 CE.

6. METODOLOGÍA DE MUESTREO OFICIAL

6.1. Población y muestra

Toma de muestras aleatoria:

Los funcionarios asignados deberán realizar la toma de las muestras al azar, de forma imprevista e inesperada en momentos no fijos y en días de la semana no especificados, No obstante, de manera discrecional podrá utilizar el muestreo dirigido en los casos señalados en los lineamientos internos del Instituto.

Toma de muestras dirigida (discrecional):

www.invima.gov.co

Línea anticorrupción: (601) 242 5040 denunciasanticorrupcion@invima.gov.co

El muestreo dirigido es sesgado, a criterio del inspector oficial y basado en su conocimiento y experticia, dirigido a poblaciones de muestra específicas para investigar y verificar cualquier problema sospechoso de riesgo potencial para la salud.

Se selecciona el animal o lote de animales, del cual se toma la muestra cuando se observen signos o síntomas que sugieren haber presentado un cuadro de enfermedad o afección, por el cual se sospeche que haya recibido algún tipo de tratamiento farmacológico, utilización de plaguicidas o que sugiera la exposición a contaminantes ambientales.

Las muestras sospechosas se toman como consecuencia de: i) resultados no conformes y presencia de sustancias en muestras anteriores de acuerdo con el plan de seguimiento, ii) Animales con patologías o signos de enfermedades o traumatismos, que sugieran que el animal fue sometido a un tratamiento farmacológico o expuesto a plaguicidas y contaminantes.

Un lote se considera sospechoso cuando:

- Se evidencian antecedentes de incumplimientos de los Límites máximos de residuos de medicamentos veterinarios y plaguicidas y de los Niveles máximos de contaminantes, de acuerdo con la legislación nacional vigente.
- Antecedentes de utilización de sustancias prohibidas en Colombia.
- Situaciones observables que sugieran que los animales fueron medicados o expuestos a plaguicidas o contaminantes antes y durante el transporte.
- Indicios de que los animales pudieron haber estado expuestos a un reciente tratamiento farmacológico, observados durante la inspección ante o post mortem, por ejemplo: animales con cojera, rastros de cirugías, glándula mamaria activa o con signos de mastitis clínica, absceso como evidencia de aplicación reciente de medicamentos, neumonía entre otros.
- Información de un brote de alguna enfermedad en la zona de origen de los animales, de la que se sospeche, de acuerdo con el tipo de brote, que se ha podido utilizar un grupo de medicamentos (antibióticos, antihelmínticos, plaguicidas, etc.).
- Otra información pertinente que esté disponible para el funcionario autorizado para la inspección, según lo establecido en el Decreto 1500 de 2007 y sus modificaciones.

En el muestreo dirigido se incluye la toma de muestras en establecimientos en los cuales se hayan encontrado no conformidades con anterioridad, con el fin de realizar seguimiento de las acciones de intervención de la planta de beneficio y de la autoridad competente en producción primaria, de acuerdo con la información correspondiente que, desde el Grupo del Sistema de Análisis de Riesgos Químicos se genere y comunique para tal fin, como el listado de predios de producción primaria de los cuales provienen los animales en los que se obtuvieron resultados no conformes, según la normatividad nacional vigente. En la vigencia 2025, se determinó que el 2% de las muestras del plan , se asignarán al muestreo dirigido para realizar la vigilancia y acciones tomadas por lo establecimientos (predios de producción

www.invima.gov.co

Línea anticorrupción: (601) 242 5040 denunciasanticorrupcion@invima.gov.co

primaria y plantas de beneficio) frente a los resultados no conformes para la sustancia Ivermectina obtenidos en el año 2024, haciendo uso del Listado de predios de producción primaria, de donde provienen los animales que arrojaron estos resultados⁶.

6.2 Criterios para la definición del tamaño de muestra

Como se expuso en el punto 5.3 Criterios para la definición del tamaño de la muestra, del Reglamento 1644/2022 CE establece que para la especie bovina, la frecuencia de muestreo debería ser mínimo del 0,25 % de los animales sacrificados (un mínimo del 25 % de las muestras deben tomarse de animales vivos de la explotación y un mínimo del 25 % deben tomarse en el matadero) para las sustancias del grupo A7 y para las sustancias del grupo B, el mismo documento relaciona que como mínimo el 0,10 % de los animales sacrificados deben ser muestreado.

Sin embargo, en la actualidad, de acuerdo con las capacidades analíticas y operativas del Invima, y en pro de dar cumplimiento con lo establecido en la Resolución 770 de 2014 en lo que respecta a carne de la especie bovina, se programará la recolección y análisis de 899 muestras de tejidos crudos, recolectadas en las plantas de beneficio seleccionadas.

6.3 Selección de establecimientos en planta de beneficio.

Para la selección de las plantas de beneficio a monitorear, se tiene en cuenta a aquellas plantas que se encuentren abiertas y autorizadas por el Invima, además de otros criterios definidos bajo enfoque de riesgo y de acuerdo con la normativa nacional vigente.

6.4 Unidad de observación estadística.

La unidad de observación estadística es una canal de bovino y las respectivas vísceras, de donde se extrae una muestra de tejido (músculo, hígado, grasa), que se seleccionará de acuerdo con el manual de toma de muestras y el lineamiento para toma y envío de muestras, y representa la unidad de análisis, la cual se remite al laboratorio para su procesamiento y análisis.

6.5 Medidas correctivas.

Las medidas correctivas se fundamentan en el modelo de inspección, vigilancia y control sanitario para los productos de uso y consumo humano establecidos en la resolución 1229 de 2013, como marco de referencia donde se incorpora el análisis y gestión de riesgos asociados al uso y consumo de bienes y servicios, a lo largo de todas las fases de las cadenas productivas, con el fin de proteger la salud humana individual y colectiva en un contexto de seguridad sanitaria nacional, mediante acciones de intervención en las cadenas productivas, orientadas a eliminar o minimizar riesgos, daños e impactos negativos para la salud humana por el uso de consumo de bienes y servicios.

⁶ LMR Ivermectina: 100 μg/kg en hígado bovino. Resolución 1382 de 2013

⁷ Anexo I REGLAMENTO DE EJECUCIÓN (UE) 2022/1646

6.6. Inspección, Vigilancia y Control con enfoque en riesgo por el INVIMA

En el caso en que se obtengan resultados no conformes frente a la legislación nacional vigente, se debe tener la siguiente información:

- Cuál fue el resultado numérico obtenido.
- Recopilar la información del acta de toma de muestra correspondiente para asegurar la trazabilidad de esta.
- Notificar a las autoridades competentes el resultado obtenido para que se hagan las debidas acciones.
- Notificar a la planta de beneficio animal donde se recolectó la muestra para que proceda de acuerdo con lo establecido en sus políticas de proveedores.
- La intervención en la producción primaria corresponde por competencias al Instituto Colombiano Agropecuario.

De acuerdo con lo anterior, cuando se presenten resultados rechazados se deben realizar acciones de intervención, consistentes en la notificación por el Grupo Técnico de Carnes de la Dirección de Alimentos y Bebidas del Invima y a la Planta de Beneficio en donde se tomó la muestra, indicándole las nuevas medidas que se deben tener en cuenta. Entre estas se contempla realizar muestreo dirigido a los animales provenientes del predio del animal involucrado en al hallazgo. A su vez el Grupo del Sistema de Análisis de Riesgos Químicos en Alimentos y Bebidas, de la Dirección de Alimentos y Bebidas del Invima, debe notificar al Instituto Colombiano Agropecuario – ICA, autoridad sanitaria en la producción primaria, para que realicen acciones de vigilancia y control directamente en el predio involucrado. No obstante, de acuerdo con los hallazgos encontrados, se podría realizar muestreo en otro tejido con el fin de verificar si la excedencia está asociada también a la toxico-cinética del residuo o contaminante.

7. ANEXOS

ANEXO 1. Templete muestras asignadas y sustancias a analizar, de acuerdo con establecido en el Reglamento 1644/2022 de la UE para el año 2025.

Nota: De acuerdo con lo establecido en el numeral 6.11 de la Resolución 770 de 2014 sobre los anexos que debe contener el presente plan, es importante destacar que el INVIMA cuenta con los documentos respectivos que garantizan el proceso de recolección de muestras oficiales y su proceso de envío hacia el laboratorio de destino, así como el acta de toma de muestra, en la cual se garantiza la trazabilidad de la muestra. Estos documentos hacen parte del Sistema de Gestión de Calidad del Instituto y son de uso institucional únicamente, por lo cual se reserva su publicación.

www.invima.gov.co

Línea anticorrupción: (601) 242 5040 denunciasanticorrupcion@invima.gov.co

8. BIBLIOGRAFÍA

- Alimentarius, C. (2009). Directrices para el diseño y la implementación de programas nacionales reglamentarios de aseguramiento de inocuidad alimentaria relacionados con el uso de medicamentos veterinarios en los animales destinados a la producción de alimentos CAC/GL 71-2009.
- Bautista, L. (1998). Diseños de muestreo estadístico. Bogotá: Universidad Nacional de Colombia.
- Comisión Europea. Dirección General de Salud y Seguridad Alimentaria (2022). Reglamento Delegado (UE) 2022/1644 de la Comisión de 7 de julio de 2022 por el que se completa el Reglamento (UE) 2017/625 del Parlamento Europeo y del Consejo con requisitos específicos para la realización de controles oficiales del uso de sustancias farmacológicamente activas autorizadas como medicamentos veterinarios o como aditivos de piensos, y de sustancias farmacológicamente activas prohibidas o no autorizadas y sus residuos.
- Comisión Europea. Dirección General de Salud y Seguridad Alimentaria (2022), Reglamento de Ejecución (UE) 2022/1646 de la Comisión de 23 de septiembre de 2022 relativo a disposiciones prácticas uniformes para la realización de controles oficiales en lo que respecta al uso de sustancias farmacológicamente activas autorizadas como medicamentos veterinarios o como aditivos de piensos, y de sustancias farmacológicamente activas prohibidas o no autorizadas y sus residuos, sobre el contenido específico de los planes nacionales de control plurianuales y disposiciones específicas para su preparación.
- CONPES, C. N. (2005). Consejo Nacional de Política Económica y Social CONPES 3375 de 2005. Política Nacional de sanidad agropecuaria e inocuidad de alimentos para el Sistema de Medidas Sanitarias y Fitosanitarias. Bogotá.
- CONPES, C. N. (2005). Consejo Nacional de Política Económica y Social CONPES 3376 de 2005. Política sanitaria y de inocuidad para las cadenas de la carne bovina y de la leche. Bogotá
- FSIS, U. S. (2009). Residue sampling and testing under the national residue program for meat and poultry products
- Gutierrez, H. A. (2016). Estrategias de muestreo. Diseño de encuestas y Estimación de parámetros. (Segunda ed.). Bogotá: Ediciones de la U.
- Lavallée, P., & Hidiroglou, M. (June de 1988). On the Stratification of Skewed Populations. Survey Methodology, 14(1).

- R Core Team. (2017). R: A Language and Environment for Statistical Computing. Recuperado el 15 de 6 de 2017, de R Foundation for Statistical Computing: https://www.R-project.org/
- Rivest, L.-P., & Baillargeon, S. (2017). stratification: Univariate Stratification of Survey Populations. Obtenido de https://CRAN.R-project.org/package=stratification
- Salud, W. -O. (2001). Riesgos de los productos químicos y seguridad alimentaria. Documento de trabajo para la planificación estratégica de la seguridad alimentaria.

Residue Plan for Bovine Group A

Reg	ulatory programme for th	ne control of <u>vete</u>	erinary drug residues in food - GRO	DUP A substanc	ces			
Count	ry	Colombia	DATE					
Year o	f plan implementation	2025	may-25					
Anima	l species or product	BOVINE						
	nal PRODUCTION DATA - number of Is slaughtered (referring to the previous	3225606						
Basis f	or number of samples	As per Annex I to Reg (EU) 2022/1646	As per Codex Alimentarius (CAC/GL 71-2009)	Other				
Planne	ed number of <u>samples</u>	899						
Group	s of substances to be controlled	NUMBER OF SAMPLES SLAUGHTER	COMPOUND or MARKER RESIDUE	MATRIX ANALYSED	CONFIRMATORY METHOD	CONFIR.METH. DETECTION LIMIT [µg/kg]	LEVEL OF ACTION (i.e. concentration above which a result is deemed non-	LABORATORY NAME
							compliant) [µg/kg]	
			Dienestrol	Hígado/Músculo	HPLC-MS/MS	2,0		EXTERNO
A1a	Stilbenes	22	Dietilestilbestrol	Hígado/Músculo	HPLC-MS/MS	2,0	Presencia	EXTERNO
			Hexestrol	Hígado/Músculo	HPLC-MS/MS	2,0		EXTERNO
			Boldenona	Hígado/Músculo	HPLC-MS/MS	1,0		EXTERNO
			Clormadinona (acetato)	Hígado/Músculo	HPLC-MS/MS	0,5		EXTERNO
			Estanozolol	Hígado/Músculo	HPLC-MS/MS	2,0		EXTERNO
			Etinilestradiol	Hígado/Músculo	HPLC-MS/MS	2,0		EXTERNO
			16b-Hidroxiestanozolol	Hígado/Músculo	HPLC-MS/MS	1,0		EXTERNO
			17b-Oestradiol	Hígado/Músculo	HPLC-MS/MS	Innecesario		EXTERNO
A1c	Steroids (with androgenic, estrogenic or progestagenic activity)	32	Medroxi-progesterona (acetato)	Hígado/Músculo	HPLC-MS/MS	1,0		EXTERNO
			Megestrol (acetato)	Hígado/Músculo	HPLC-MS/MS	1,0	10	EXTERNO
			Melengestrol (acetato)	Hígado/Músculo	HPLC-MS/MS	1,0		EXTERNO

Residue Plan for Bovine Group A

Groups of substances to be controlled		NUMBER OF SAMPLES SLAUGHTER	COMPOUND or MARKER RESIDUE	MATRIX ANALYSED	CONFIRMATORY METHOD	Confir.meth. Detection Limit [µg/kg]	LEVEL OF ACTION (i.e. concentration above which a result is deemed noncompliant) [µg/kg]	LABORATORY NAME
			Metiltestosterona	Hígado/Músculo	HPLC-MS/MS	1,0		EXTERNO
			17a-19-Nortestosterona (epi-nandrolona)	Hígado/Músculo	HPLC-MS/MS	1,0		EXTERNO
			17b-19-Nortestosterona (nandrolona)	Hígado/Músculo	HPLC-MS/MS	1,0		EXTERNO
			17a-Trembolona	Hígado/Músculo	HPLC-MS/MS	1,0	10	EXTERNO
			Taleranol	Hígado	HPLC-MS/MS	2,0		externo
A1d	Resorcyclic acid lactones	15	Zearalenona	Hígado	HPLC-MS/MS	2,0		EXTERNO
			Zeranol	Hígado	HPLC-MS/MS	2,0	10	EXTERNO
			Brombuterol	Hígado	HPLC-MS/MS	0,1		INVIMA
			Clenbuterol	Hígado	HPLC-MS/MS	0,1	0,6	INVIMA
			Clenbuterol- hidroximetil	Hígado	HPLC-MS/MS	0,1		INVIMA
		100	Mapenterol	Hígado	HPLC-MS/MS	0,1		INVIMA
			Mabuterol	Hígado	HPLC-MS/MS	0,1		
A1e	Poto agonists		Tulobuterol	Hígado	HPLC-MS/MS	0,1		INVIMA
Ale	Beta-agonists		Cimbuterol	Hígado	HPLC-MS/MS	0,25		INVIMA
			Salbutamol	Hígado	HPLC-MS/MS	2,5		INVIMA
			Salmeterol	Hígado	HPLC-MS/MS	2,5		INVIMA
			Zilpaterol	Hígado	HPLC-MS/MS	2,5		INVIMA
			Terbutalina	Hígado	HPLC-MS/MS	5,0		INVIMA
			Ractopamina	Hígado	HPLC-MS/MS	20,0	40	INVIMA
A2a	Chloramphenicol	60	Cloranfenicol	Músculo	HPLC-MS/MS	0,15	Presencia	INVIMA
			Metabolito Nitrofurantoína: 1 aminohidantoína (AHD)	Músculo	LC-MS/MS	0,5		INVIMA
			Metabolito Nitrofurazona: Semicarbazida (SEM)	Músculo	LC-MS/MS	0,5	Presencia	INVIMA
A2b	Nitrofurans	60	Metabolito Furazolidona: 3-amino-2-oxazolidinona (AOZ)	Músculo	LC-MS/MS	0,5	Presencia	INVIMA
			Metabolito Furaltadona: 3-amino-5-morfolinometil-2-oxazolidinona (AMOZ)	Músculo	LC-MS/MS	0,5	Presencia	INVIMA

Residue Plan for Bovine Group A

			Gi	oup A				
Group	s of substances to be controlled	NUMBER OF SAMPLES SLAUGHTER	COMPOUND or MARKER RESIDUE	MATRIX ANALYSED	CONFIRMATORY METHOD	CONFIR.METH. DETECTION LIMIT [µg/kg]	LEVEL OF ACTION (i.e. concentration above which a result is deemed non-compliant) [µg/kg]	LABORATORY NAME
			Dimetridazol	Músculo	HPLC o UHPLC MS/MS	0,2	Presencia	EXTERNO
			Hidroxi dimetridazol	Músculo	HPLC o UHPLC MS/MS	0,5		EXTERNO
			Hidroxi ipronidazol	Músculo	HPLC o UHPLC MS/MS	0,2		EXTERNO
			Hidroxi metronidazol	Músculo	HPLC o UHPLC MS/MS	0,3		EXTERNO
A2c	Nitroimidazoles	12	lpronidazol	Músculo	HPLC o UHPLC MS/MS	0,2		EXTERNO
AZC	Nitrollilidazoles	IZ	Metronidazol	Músculo	HPLC o UHPLC MS/MS	0,2		EXTERNO
			Ornidazol	Músculo	HPLC o UHPLC MS/MS	0,2		EXTERNO
			Ronidazol	Músculo	HPLC o UHPLC MS/MS	0,2		EXTERNO
			Secnidazol	Músculo	HPLC o UHPLC MS/MS	0,2		EXTERNO
			Tinidazol	Músculo	HPLC o UHPLC MS/MS	0,2		EXTERNO
A3b	Plant protection products and biocides	10	Violeta de genciana	Por definir	HPLC o UHPLC MS/MS	0,03		EXTERNO
		10	Olaquindox	Por definir	HPLC o UHPLC MS/MS	3,0	Presencia	EXTERNO
A3c	Unauthorised antimicrobials		Polimixina B	Por definir	HPLC o UHPLC MS/MS	20,0	Presencia	EXTERNO
			Polimixina E (Colistina)	Por definir	HPLC o UHPLC MS/MS	20,0	Presencia	EXTERNO
	 the previous year, with the foll one half of the samples are t If relevant to verify complian taken from feed, water or anot Each sub-group in Group A (vertical for Group A. The compumber of samples for all Group In the event that the minimum be carried out once per two ye 	owing breakdown: o be taken from live and ce with Union legislation ther relevant matrix or exith the exception of Agreement authority should up A sub-groups meets number of samples wo	year for Group A residues must at least equal mals on the holding and one half at slaughter on on the use of prohibited or unauthorised prenvironment and counted towards achieving to g(f)) must be checked each year using a minimal attribute the remaining samples to each sub or exceeds the minimum required for Group Auld, on the basis of the production volumes, reto a minimum of one sample is not reached,	narmacologically active the minimum sampling num of 5 % of the total group according to a A. esult in less than five	ve substances, samples g frequencies provided I number of samples to risk, ensuring that the samples per year, san	s may be d for. o be total sample		

Regu	ulatory programme fo	or the control of veter	inary drug residues in food -	GROUP B s	substances			
Country	,	Colombia	DATE		_			
	plan implementation	2025	may-25					
	•		may-25		-			
Animal s	species or product	BOVINE						
	I PRODUCTION DATA - number als slaughtered (referring to the s year)	3225606						
Basis for	number of samples	As per Annex I to Reg (EU) 2022/1646	As per Codex Alimentarius (CAC/GL 71-2009)	Other				
Planned	number of samples	478						
Groups	of substances to be controlled	Planned number of SAMPLES	COMPOUND or MARKER RESIDUE	MATRIX ANALYSED	CONFIRMATORY METHOD	[µg/kg]	LEVEL OF ACTION (i.e. concentration above which a result is deemed non- compliant) [µg/kg]	LABORATORY NAME
i T			Apramicina	Músculo	HPLC-MS/MS	50		EXTERNO
			Dihidroestreptomicina	Músculo	HPLC-MS/MS	50	600	EXTERNO
			Estreptomicina	Músculo	HPLC-MS/MS	50	600	EXTERNO
			Espectinomicina Gentamicina	Músculo Músculo	HPLC-MS/MS HPLC-MS/MS	50 15	500 100	EXTERNO EXTERNO
			Kanamicina A	Músculo	HPLC-MS/MS	50	100	EXTERNO
			Neomicina B	Músculo	HPLC-MS/MS	100	500	EXTERNO
			Paromomicina	Músculo	HPLC-MS/MS	100	555	EXTERNO
			Ampicilina	Músculo	HPLC-MS/MS	5		INVIMA
			Penicilina G	Músculo	HPLC-MS/MS	5		INVIMA
			Penicilina V	Músculo	HPLC-MS/MS	5		INVIMA
			Amoxacilina	Músculo	HPLC-MS/MS	10	50	INVIMA
			Nafcilina	Músculo	HPLC-MS/MS	30		INVIMA
			Oxacilina	Músculo	HPLC-MS/MS	30		INVIMA
			Cloxacilina	Músculo	HPLC-MS/MS	30		INVIMA
			Dicloxacilina	Músculo	HPLC-MS/MS	30		INVIMA
			Ácido Nalidíxico	Músculo	HPLC-MS/MS	5		INVIMA
			Norfloxacina	Músculo	HPLC-MS/MS	5		INVIMA
			Sarafloxacina	Músculo	HPLC-MS/MS	5		INVIMA
			Ácido Oxolínico	Músculo	HPLC-MS/MS	10		INVIMA
			Enrofloxacina	Músculo	HPLC-MS/MS	10		INVIMA
			Ciprofloxacina Danofloxacina	Músculo Músculo	HPLC-MS/MS HPLC-MS/MS	10 10	200	INVIMA INVIMA
			Marbofloxacina	Músculo	HPLC-MS/MS	15	200	INVIMA
			Flumequin	Músculo	HPLC-MS/MS	20	500	INVIMA
			Difloxacina	Músculo	HPLC-MS/MS	40	300	INVIMA
			Clortetraciclina	Músculo	HPLC-MS/MS	10	200	INVIMA
J			Doxiciclina	Músculo	HPLC-MS/MS	10		INVIMA
			Oxitetraciclina	Músculo	HPLC-MS/MS	10	200	INVIMA
			Tetraciclina	Músculo	HPLC-MS/MS	10	200	INVIMA
31a	Antimicrobials	352	Cefoperazona	Músculo	HPLC-MS/MS	20		INVIMA
ıa /	- Trurrii Cropiais	332	Ceftiofur	Músculo	HPLC-MS/MS	100	1000	INVIMA
			Cefazolin	Músculo	HPLC-MS/MS	10		INVIMA
			Cefapirina	Músculo	HPLC-MS/MS	5		INVIMA
			Espiramicina	Músculo	HPLC-MS/MS	25	200	INVIMA
			Gamitromicina	Músculo	HPLC-MS/MS	5		INVIMA
			Tilmicosina	Músculo	HPLC-MS/MS	5	100	INVIMA
			Tilosina	Músculo	HPLC-MS/MS	10	100	INVIMA
			Eritromicina	Músculo	HPLC-MS/MS	20		INVIMA
J			Tulatromicina	Músculo	HPLC-MS/MS	20		INVIMA
			Lincomicina	Músculo	HPLC-MS/MS	10		INVIMA

Group	os of substances to be controlled	Planned number of SAMPLES	COMPOUND or MARKER RESIDUE	MATRIX ANALYSED	CONFIRMATORY METHOD	Confir.meth. Detection Limit [µg/kg]	LEVEL OF ACTION (i.e. concentration above which a result is deemed non-compliant) [µg/kg]	LABORATORY NAME
			Clindamicina	Músculo	HPLC-MS/MS	5		INVIMA
			Sulfadiazina	Músculo	HPLC-MS/MS	10		INVIMA
			Sulfatiazol	Músculo	HPLC-MS/MS	10		INVIMA
			Sulfametazina/Sulfadimidina	Músculo	HPLC-MS/MS	10	100	INVIMA
			Sulfadoxina	Músculo	HPLC-MS/MS	10		INVIMA
			Sulfametoxazol	Músculo	HPLC-MS/MS	10		INVIMA
			Sulfadimetoxina	Músculo	HPLC-MS/MS	10		INVIMA
			Sulfapiridina Sulfaquinoxalina	Músculo Músculo	HPLC-MS/MS	10 10		INVIMA INVIMA
			Sulfamerazina	Músculo	HPLC-MS/MS HPLC-MS/MS	10		INVIMA
			Sulfacloropiridazina	Músculo	HPLC-MS/MS	10		INVIMA
			Sulfametizol	Músculo	HPLC-MS/MS	10		INVIMA
			Sulfametoxipiridazina	Músculo	HPLC-MS/MS	10		INVIMA
			Sulfaclozin	Músculo	HPLC-MS/MS	10		INVIMA
			Sulfamonometoxina	Músculo	HPLC-MS/MS	10		INVIMA
			Sulfisoxazol	Músculo	HPLC-MS/MS	10		INVIMA
			Sulfamoxol	Músculo	HPLC-MS/MS	10		INVIMA
			Florfenicol	Músculo	HPLC-MS/MS	10		INVIMA
			Tianfenicol	Músculo	HPLC-MS/MS	10		INVIMA
			Dapson	Músculo	HPLC-MS/MS	2		INVIMA
			Bacitracina	Músculo	HPLC-MS/MS	20		INVIMA
			Ivermectina	Hígado	HPLC-Detector de fluorescencia	10	100	INVIMA
			Doramectina	Hígado	HPLC-Detector de fluorescencia	10	100	INVIMA
			Moxidectin	Hígado	HPLC-Detector de fluorescencia	10	100	INVIMA
			Albendazol	Músculo	HPLC-MS/MS			EXTERNO
			Albendazol sulfona	Músculo	HPLC-MS/MS			EXTERNO
			Albendazol-2-aminosulfona Albendazol sulfóxido	Músculo Músculo	HPLC-MS/MS HPLC-MS/MS			EXTERNO EXTERNO
			aminosulfona y albendazol sulfóxido, expresado	Músculo	HPLC-MS/MS			EXTERNO
			como albendazol					
	Insecticides, fungicides,		Fenbendazol	Músculo	HPLC-MS/MS			EXTERNO
B1b	anthelmintics and other	92	Oxfendazol Oxfendazol sulfona (fenbendazol sulfona)	Músculo Músculo	HPLC-MS/MS HPLC-MS/MS			EXTERNO EXTERNO
	antiparasitic agents	<u> </u>	Suma fenbendazol, oxfendazol y oxfendazol sulfona	Músculo	HPLC-MS/MS			EXTERNO
			Flubendazol	Músculo	HPLC-MS/MS			EXTERNO
			2-aminoflubendazol	Músculo	HPLC-MS/MS			EXTERNO
			Suma flubendazol y 2-aminoflubendazol	Músculo	HPLC-MS/MS			EXTERNO
			Levamisol	Músculo	HPLC-MS/MS			EXTERNO
			Prazicuantel	Músculo	HPLC-MS/MS			EXTERNO
			Tiabendazol	Músculo	HPLC-MS/MS			EXTERNO
			5-hidroxitiabendazol	Músculo	HPLC-MS/MS			EXTERNO
			Suma tiabendazol y 5-hidroxitiabendazol	Músculo	HPLC-MS/MS			EXTERNO
			Carprofeno	Músculo	HPLC-MS/MS			EXTERNO
			Flunixina	Músculo	HPLC-MS/MS			EXTERNO
			Ketoprofeno	Músculo	HPLC-MS/MS			EXTERNO
			Meloxicam	Músculo	HPLC-MS/MS			EXTERNO
			Beclometasona	Músculo	HPLC-MS/MS			EXTERNO
	NSAIDs, corticosteroids and		Betametasona	Músculo	HPLC-MS/MS			EXTERNO
B1d	•	22	Dexametasona	Músculo	HPLC-MS/MS			EXTERNO
	glucocorticoids		Flumetasona	Músculo	HPLC-MS/MS			EXTERNO
			Metilprednisolona	Músculo	HPLC-MS/MS			EXTERNO
			Prednisolona	Músculo	HPLC-MS/MS			EXTERNO
			Triamcinolona	Músculo	HPLC-MS/MS			EXTERNO
			Acetonido de fluocinolona	Músculo	HPLC-MS/MS			EXTERNO
			Acetonido de triamcinolona	Músculo	HPLC-MS/MS			EXTERNO
			Clopidol	Músculo	HPLC-MS/MS			EXTERNO

Grou	ps of substances to be controlled	Planned number of SAMPLES	COMPOUND or MARKER RESIDUE	MATRIX ANALYSED	CONFIRMATORY METHOD	Confir.meth. Detection Limit [µg/kg]	LEVEL OF ACTION (i.e. concentration above which a result is deemed non- compliant) [µg/kg]	LABORATORY NAME
			Decoquinato	Músculo	HPLC-MS/MS			EXTERNO
			Diclazurilo	Músculo	HPLC-MS/MS			EXTERNO
	A sale and a sale and alternative second		DNC (4,4'dinitrocarbanilida)	Músculo	HPLC-MS/MS			EXTERNO
В2	Authorised coccidiostats and	12	Lasalocid de Sodio	Músculo	HPLC-MS/MS			EXTERNO
1	histomonostats	12	Maduramicina de amonio	Músculo	HPLC-MS/MS			EXTERNO
			Monensina sódica	Músculo	HPLC-MS/MS			EXTERNO
			Narasina	Músculo	HPLC-MS/MS			EXTERNO
			Robenidina clorhidrato	Músculo	HPLC-MS/MS			EXTERNO
			Salinomicina de sodio	Músculo	HPLC-MS/MS			EXTERNO
p T ir n	revious year. hird countries should decide on Iclude and exclude substances, umber of samples required for a	a risk basis what substances the the range of of substances incl any substance group.	Group B residues must at least equal 0,1% ney test for in each substance group and suded in each substance group and the nuel basis of the production volumes, result	should be in a po umber of sample:	sition to justify their decisi s tested. There is no minin	ons to num		

Country	Colombia	DATE					
/ear of plan implementation	2025	may-25					
Animal species or product	Bovine						
Planned no of samples (no minimum set)	60						
Groups of pesticides to be controlled	Planned number of SAMPLES	COMPOUND or MARKER RESIDUE	MATRIX ANALYSED	CONFIRMATORY METHOD	CONFIR.METH. DETECTION LIMIT [mg/kg]	LEVEL OF ACTION (i.e. concentration above which a result is deemed non-compliant) [mg/kg]	LABORATORY NAME
		Aldrín	Grasa	CG MS/MS	0,019		INVIMA
		a- Endosulfán	Grasa	CG MS/MS	0,019		INVIMA
_		b- Endosulfán	Grasa	CG MS/MS	0,019		INVIMA
ate		Benfuresato (Bensofurano)	Grasa	CG MS/MS	0,019		INVIMA
<u>"</u>		Butaclor (acetamida, cloroacetanilida)	Grasa	CG MS/MS	0,019		INVIMA
Sp		Cianazina (Triazina clorada)	Grasa	CG MS/MS	0,019		INVIMA
Š S		Ciflutrina	Grasa	CG MS/MS	0,019		INVIMA
P isi		Ciproconazol	Grasa	CG MS/MS	0,019		INVIMA
Organophosphate Pyrethroids		Cis Clordano Clofentezina (Tetrazina clorada)	Grasa Músculo/ Grasa	CG MS/MS HPLC-MSMS/GC-MSMS	0,019 0,0075 Músculo. 0,019 Grasa	0,05 músculo	INVIMA
		Dicofol	Grasa	CG MS/MS	0,019		INVIMA
ds, es,		Dieldrín	Grasa	CG MS/MS	0,019		INVIMA
compounds, Carbamates,		Difenconazol (conazol, clorado)	Grasa	CG MS/MS	0,019		INVIMA
70 E	60	Dimetomorf (morfolina, clorado)	Grasa	CG MS/MS	0,019		INVIMA
ge a	00	Dioxacarb	Grasa	CG MS/MS	0,019		INVIMA
om ari		Endrín	Grasa	CG MS/MS	0,019		INVIMA
9		Epoxiconazol (conazol, clorado, fluorado)	Grasa Grasa	CG MS/MS CG MS/MS	0,019 0,019		INVIMA INVIMA
be ds,		Etion Fenarimol	Grasa	CG MS/MS	0,019		INVIMA
Organochlorinated compounds,		Fipronil (nicotiniode. fenilpirazol, clorado, fluorado)	Músculo/ Grasa	HPLC-MSMS/GC-MSMS	0,0075 Músculo. 0,019 Grasa	0,5 músculo	INVIMA
		Fenvaletaro	Grasa	CG MS/MS	0,019		INVIMA
		Flutolanil (anilida, fluorado)	Músculo/ Grasa	HPLC-MSMS/GC-MSMS	0,0075 Músculo. 0.019 Grasa	0,05 músculo	INVIMA
<u>Jar</u>		Hexaclorobenceno	Grasa	CG MS/MS	0,019		INVIMA
<u>D</u>		Heptacloro	Grasa	CG MS/MS	0,019		INVIMA
Ο		Lindano	Grasa	CG MS/MS	0,019		INVIMA
		Metalaxil (acilalanina, anilida) Metconazol (conazol, clorado)	Grasa Grasa	CG MS/MS CG MS/MS	0,019 0,019		INVIMA INVIMA

Groups of pesticides to be controlled	Planned number of SAMPLES	COMPOUND or MARKER RESIDUE	MATRIX ANALYSED	CONFIRMATORY METHOD	CONFIR.METH. DETECTION LIMIT [mg/kg]	LEVEL OF ACTION (i.e. concentration above which a result is deemed non-compliant) [mg/kg]	LABORATORY NAME
		Metribuzin (Triazina)	Grasa	CG MS/MS	0,019		INVIMA
		Mirex	Grasa	CG MS/MS	0,019		INVIMA
SS,		Pendimetalina (Dinitroanilina)	Grasa	CG MS/MS	0,019		INVIMA
l at		Piriproxifen (fenil éter)	Grasa	CG MS/MS	0,019		INVIMA
Carbamates,		Procloraz (conazol, clorado)	Músculo/ Grasa	HPLC-MSMS/GC-MSMS	0,0075 Músculo. 0.019 Grasa 0,0075 Músculo.	0,5 músculo	INVIMA
arb		Propiconazol (conazol, clorado)	Músculo/ Grasa	HPLC-MSMS/GC-MSMS	0,0075 Musculo. 0.019 Grasa	0,05 músculo	INVIMA
		Propoxur	Grasa	CG MS/MS	0,019		INVIMA
ls,		Simetrina	Grasa	CG MS/MS	0,019		INVIMA
und Dund		Tebuconazol (Azol, clorado)	Músculo/ Grasa	HPLC-MSMS/GC-MSMS	0,0075 Músculo. 0.019 Grasa	0,05 músculo	INVIMA
<u> </u> 8		Tetradifon	Grasa	CG MS/MS	0,019		INVIMA
dwc		Triadimefon (Conazol clorado)	Músculo/ Grasa	HPLC-MSMS/GC-MSMS	0,0075 Músculo. 0.019 Grasa 0,0075 Músculo.	0,05 músculo	INVIMA
ັບ ພູ		Triadimenol (Triazol, clorado)	Músculo/ Grasa	HPLC-MSMS/GC-MSMS	0,0075 Músculo. 0.019 Grasa	0,05 músculo	INVIMA
l at		Triflumizol (Conazol, imidazol, clorado, fluorado)	Grasa	CG MS/MS	0,019		INVIMA
7		Zoxamida	Grasa	CG MS/MS	0,019		INVIMA
SC S		2,4 DDD (Diclorodifenildicloroetano)	Grasa	CG MS/MS	0,019		INVIMA
ļ ģ ģ		2,4 DDE	Grasa	CG MS/MS	0,019		INVIMA
d o		2,4 D-1 Butil ester	Grasa	CG MS/MS	0,019		INVIMA
l ğ f		4,4 DDD	Grasa	CG MS/MS	0,019		INVIMA
Organophosphate compounds, Pyrethroids		4,4 DDT	Grasa	CG MS/MS	0,019	0.05	INVIMA
		Acceptato	Músculo	HPLC-MSMS	0,0075	0,05 músculo	INVIMA
		Ametrina (Triazina) Atrazina (Triazina)	Músculo Músculo/ Grasa	HPLC-MSMS HPLC-MSMS/GC-MSMS	0,0075 0,0075 Músculo.		INVIMA
Organochlorinated compounds,		Azinfos metil	Músculo	HPLC-MSMS	0.019 Grasa 0,0075		INVIMA
		Azoxistrobin (Estrobilurina)	Músculo	HPLC-MSMS	0,0075		INVIMA
		Benzoximato	Músculo	HPLC-MSMS	0,0075		INVIMA
		Bitertanol (Triazol)	Músculo	HPLC-MSMS	0,0075	0,05 músculo	INVIMA
		Butóxido de Piperonilo (Sinérgico)	Músculo/ Grasa	HPLC-MSMS/GC-MSMS	0,0075 Músculo.	0,00	INVIMA
		Clorfenvinfos	Músculo/ Grasa	HPLC-MSMS/GC-MSMS	0.019 Grasa 0,0075 Músculo. 0.019 Grasa		INVIMA
lorir 		Clorpirifos	Músculo/ Grasa	HPLC-MSMS/GC-MSMS	0.019 Grasa 0,0075 Músculo. 0.019 Grasa	1,0 músculo	INVIMA
och		Clorpirifos metil	Músculo/ Grasa	HPLC-MSMS/GC-MSMS	0.019 Grasa 0,0075 Músculo. 0.019 Grasa	0,05 músculo 0.05 grasa	INVIMA
gan		Diazinón	Músculo/ Grasa	HPLC-MSMS/GC-MSMS	0.019 Grasa 0,0075 Músculo. 0,019 Grasa	2,0 músculo	INVIMA
Ö		Diclorvos	Músculo	HPLC-MSMS	0,0075	0,05 músculo	INVIMA
		Dimetoato	Músculo/ Grasa	HPLC-MSMS/GC-MSMS	0,0075 Músculo. 0.019 Grasa		INVIMA

Groups of pesticides to be controlled	Planned number of SAMPLES	COMPOUND or MARKER RESIDUE	MATRIX ANALYSED	CONFIRMATORY METHOD	CONFIR.METH. DETECTION LIMIT [mg/kg]	LEVEL OF ACTION (i.e. concentration above which a result is deemed non-compliant) [mg/kg]	LABORATORY NAME
		Etoprofos	Músculo/ Grasa	HPLC-MSMS/GC-MSMS	0,0075 Músculo.	0,01 músculo	INVIMA
ις.		Fenamifos	Músculo	HPLC-MSMS	0,019 Grasa 0,0075	0.01 músculo	INVIMA
late		Fention	Músculo/ Grasa	HPLC-MSMS/GC-MSMS	0,0075 Músculo.	3,1 11111	INVIMA
оат		Fipronil (nicotiniode. fenilpirazol, clorado, fluorado)	Músculo/ Grasa	HPLC-MSMS/GC-MSMS	0.019 Grasa 0,0075 Músculo. 0.019 Grasa		INVIMA
Carbamates,		Forato	Músculo/ Grasa	HPLC-MSMS/GC-MSMS	0.019 Grasa 0,0075 Músculo. 0.019 Grasa	0,02 músculo	INVIMA
		Fosmet	Músculo	HPLC-MSMS	0,0075		INVIMA
Ď		Fostiazato	Músculo	HPLC-MSMS	0,0075		INVIMA
] 5		Indoxacarb (oxadiazina, clorado, fluorado)	Músculo	HPLC-MSMS	0,0075		INVIMA
Organophosphate compounds, Pyrethroids		Kresoxim metil (Estrobilurina)	Músculo/ Grasa	HPLC-MSMS/GC-MSMS	0,0075 Músculo. 0.019 Grasa 0,0075 Músculo.	0,05 músculo	INVIMA
O		Malation	Músculo/ Grasa	HPLC-MSMS/GC-MSMS	0,0075 Musculo. 0.019 Grasa		INVIMA
Q.		Metamidofos	Músculo	HPLC-MSMS	0,0075	0,01 músculo	INVIMA
at		Paration metil	Músculo	HPLC-MSMS	0,0075		INVIMA
hds.		Profenofos	Músculo/ Grasa	HPLC-MSMS/GC-MSMS	0,0075 Músculo. 0.019 Grasa 0,0075 Músculo.		INVIMA
Organopho Pyrethroids		Terbufos	Músculo/ Grasa	HPLC-MSMS/GC-MSMS	0,0075 Músculo. 0.019 Grasa	0,05 músculo	INVIMA
1 80 21		Triazofos	Músculo	HPLC-MSMS	0,0075		INVIMA
an art		Tribufos	Músculo	HPLC-MSMS	0,0075		INVIMA
J		Carbendazim	Músculo	HPLC-MSMS	0,0075	0,05 músculo	INVIMA
		Fenpropimorf	Músculo/ Grasa	HPLC-MSMS/GC-MSMS	0,0075 Músculo. 0.019 Grasa	0,02 músculo	INVIMA
l ds		Imidacloprid	Músculo	HPLC-MSMS	0,0075	0,02 músculo	INVIMA
unc		Metopreno	Músculo/ Grasa	HPLC-MSMS/GC-MSMS	0,0075 Músculo. 0.019 Grasa	0,2 músculo	INVIMA
ا ق		Metoxifenozida	Músculo	HPLC-MSMS	0,0075	0,05 músculo	INVIMA
l 6		Novaluron	Músculo	HPLC-MSMS	0,0075	10,0 músculo	INVIMA
0		Piperonil butóxido	Músculo	HPLC-MSMS	0,0075		INVIMA
atec		Pirimicarb	Músculo/ Grasa	HPLC-MSMS/GC-MSMS	0,0075 Músculo. 0.019 Grasa	0,05 músculo	INVIMA
l su		Trifloxistrobin	Músculo	HPLC-MSMS	0,0075	0,05 músculo	INVIMA
l Ö.		Aldicarb	Músculo	HPLC o UHPLC-MSMS /GC-MS/MS	0,0075	0,01 músculo	EXTERNO
l Ë		Amitraz	Músculo	HPLC o UHPLC-MSMS /GC-MS/MS	0,0075	0,05 músculo	EXTERNO/ INVIMA
Organochlorinated compounds,		Bifentrina	Músculo/ Grasa	HPLC-MSMS/GC-MSMS	0,0075 Músculo. 0.019 Grasa	0,5 músculo 0.5 grasa	EXTERNO/ INVIMA
Jai		Carbarilo	Músculo	HPLC o UHPLC-MSMS /GC-MS/MS	0,0075	0,05 músculo	EXTERNO/ INVIMA
Orc		Carbofuran	Músculo/ Grasa	HPLC o UHPLC-MSMS /GC-MS/MS	0,0075 Músculo. 0,019 Grasa	0,05 grasa	EXTERNO/ INVIMA
		Carbofuran 3 Hidroxi	Grasa	GC-MS/MS	0,019		
		Metomilo	Músculo	HPLC o UHPLC-MSMS /GC-MS/MS	0,0075 Músculo.	0,02 músculo	EXTERNO/ INVIMA

Residue Plan for Bovine Pesticides

Groups of pesticides to be controlled	Planned number of SAMPLES	COMPOUND or MARKER RESIDUE	matrix analysed	CONFIRMATORY METHOD	CONFIR.METH. DETECTION LIMIT [mg/kg]	LEVEL OF ACTION (i.e. concentration above which a result is deemed non-compliant) [mg/kg]	LABORATORY NAME
Organochlorinated compounds, Organophosphate compounds, Carbamates, Pyrethroids		Oxamilo	Músculo	HPLC o UHPLC-MSMS /GC-MS/MS	0,0075	0,02 músculo	EXTERNO/ INVIMA
		Cipermetrina	Músculo/ Grasa	HPLC o UHPLC-MSMS /GC-MS/MS	0,0075 Músculo. 0.019 Grasa 0,0075 Músculo.		EXTERNO/ INVIMA
		Deltamentrina	Músculo/ Grasa	HPLC o UHPLC-MSMS /GC-MS/MS	0,0075 Músculo. 0,019 Grasa	0,5 músculo	EXTERNO/ INVIMA
		Lambda cihalotrin (gamma-cihalotrina)	Músculo/ Grasa	HPLC o UHPLC-MSMS /GC-MS/MS	0,0075 Músculo. 0,019 Grasa		EXTERNO/ INVIMA
		Permetrina	Músculo/ Grasa	HPLC o UHPLC-MSMS /GC-MS/MS	0,0075 Músculo. 0,019 Grasa	1,0 músculo	EXTERNO/ INVIMA
		Praletrina	Músculo	HPLC o UHPLC-MSMS /GC-MS/MS	0,01		EXTERNO
		Teflutrina	Músculo	HPLC o UHPLC-MSMS /GC-MS/MS	0,02		externo
		Transflutrina	Músculo	HPLC o UHPLC-MSMS /GC-MS/MS	0,002		externo
		Tetrametrina	Músculo	HPLC o UHPLC-MSMS /GC-MS/MS	0,002		externo

a far the control	of contaminants in food						
e for the control	of <u>contaminants</u> in tood						
	DATE						
2025	may-25						
Bovine							
3225606							
As per Annex I to Reg (EU) 2022/932	Other						
40							
Planned number of SAMPLES	COMPOUND or MARKER RESIDUE	MATRIX ANALYSED	CONFIRMATORY METHOD	DETECTION LIMIT		LEVEL OF ACTION (i.e. concentration above which a result is deemed non-compliant) [mg/kg]	LABORATORY NAME
30	Cadmio	Músculo	ICP-OES	0,01	0,05	0,05	INVIMA
10	Aflatoxina B1	Hígado	HPLC-FL o HPLC o UHPLC detector MS/MS				externo
	Aflatoxina B2	Hígado	HPLC-FL o HPLC o UHPLC detector MS/MS				EXTERNO
	Aflatoxina G1	Hígado	HPLC-FL o HPLC o UHPLC detector MS/MS				EXTERNO
	Aflatoxina G2	Hígado	HPLC-FL o HPLC o UHPLC detector MS/MS				EXTERNO
	2025 Bovine 3225606 As per Annex I to Reg (EU) 2022/932 40 Planned number of SAMPLES 30	Bovine 3225606 As per Annex I to Reg (EU) 2022/932 40 Planned number of SAMPLES COMPOUND or MARKER RESIDUE 30 Aflatoxina B1 Aflatoxina B2 Aflatoxina G1 Aflatoxina G2 to be checked each year for contaminants is 0,02% of the number of bovine and the series of	DATE 2025 may-25 Bovine 3225606 As per Annex I to Reg (EU) 2022/932 40 Planned number of SAMPLES COMPOUND or MARKER RESIDUE MATRIX ANALYSED MATRIX ANALYSED Aflatoxina B1 Aflatoxina B1 Higado Aflatoxina G1 Aflatoxina G2 Higado Higado Higado Higado Higado	DATE 2025 may-25 Bovine 3225606 As per Annex I to Reg (EU) 2022/932 40 Planned number of SAMPLES COMPOUND or MARKER RESIDUE MATRIX ANALYSED CONFIRMATORY METHOD Aflatoxina B1 Aflatoxina B1 Aflatoxina B2 Aflatoxina B2 Aflatoxina B2 Aflatoxina B2 Aflatoxina G1 Aflatoxina G2 Aflatoxina G3 Aflatoxina G4 Aflatoxina G5 Aflatoxina G6 Aflatoxina G7 Aflatoxina G7 Aflatoxina G7 Aflatoxina G2 Aflatoxina G7 A	DATE 2025 may-25 Bovine 3225606 As per Annex I to Reg (EU) 2022/932 40 Planned number of SAMPLES COMPOUND or MARKER RESIDUE MATRIX ANALYSED CONFIRMATORY METHOD Img/kg] 30 Cadmio Aflatoxina 81 Aflatoxina 82 Aflatoxina 82 Aflatoxina 61 Aflatoxina 61 Aflatoxina 62 Migado Migado	DATE 2025 may-25 Bovine 3225606 As per Annex I to Reg (EU) 2022/932 Planned number of SAMPLES COMPOUND or MARKER RESIDUE MATRIX ANALYSED CONFIRMATORY METHOD DETECTION LIMIT applicable) [Ing/kg] 30 Cadmio Missulo ICP-OES 0,01 0.05 Aflatoxina 81 Higado HPLC-FL o HPLC o UHPLC detector MS/MS Aflatoxina 82 Higado HPLC-FL o HPLC o UHPLC detector MS/MS Aflatoxina 61 Higado HPLC-FL o HPLC o UHPLC detector MS/MS Aflatoxina G2 Higado HPLC-FL o HPLC O UHPLC detector MS/MS Aflatoxina G2 Higado HPLC-FL o HPLC O UHPLC detector MS/MS Aflatoxina G2 Higado HPLC-FL o HPLC O UHPLC detector MS/MS Aflatoxina G2 Higado HPLC-FL o HPLC O UHPLC detector MS/MS Aflatoxina G2 Higado HPLC-FL o HPLC O UHPLC detector MS/MS Aflatoxina G2 Higado HPLC-FL o HPLC O UHPLC detector MS/MS Aflatoxina G2 Higado HPLC-FL o HPLC O UHPLC detector MS/MS Aflatoxina G2 Higado HPLC-FL o HPLC O UHPLC detector MS/MS Aflatoxina G2 Higado HPLC-FL o HPLC O UHPLC detector MS/MS Aflatoxina G2 Higado HPLC-FL o HPLC O UHPLC detector MS/MS Aflatoxina G2 HIGADO HPLC-FL O HPLC O UHPLC detector MS/MS Aflatoxina G2 HIGADO HPLC-FL O HPLC O UHPLC detector MS/MS Aflatoxina G2 HIGADO HPLC-FL O HPLC O UHPLC detector MS/MS	DATE 2025 may-25 Bovine 3225606 As per Annex to Reg (EU) 2022/932 Other COMPOUND or MARKER RESIDUE MATRIX ANALYSED CONFIRMATORY METHOD SAMPLES COMPOUND or MARKER RESIDUE MATRIX ANALYSED CONFIRMATORY METHOD CONFIRMATORY METHOD CONFIRMETH. DETECTION LIMIT [mg/kg] mg/kg] mg/kg] Matrix ANALYSED CONFIRMATORY METHOD Allatonina 81 Higado HPIC-FL o HPIC o UHPIC detector MS/MS/MS Allatonina G1 Higado HIGH O HPIC O UHPIC OURPIC detector MS/MS/MS Allatonina G2 Higado HIGH O HPIC O UHPIC OURPIC detector MS/MS/MS Allatonina G2 Highdo HPIC-FL o HPIC O UHPIC OURPIC detector MS/MS/MS Allatonina G2 Highdo HPIC-FL o HPIC O UHPIC OURPIC detector MS/MS/MS Allatonina G2 Highdo HPIC-FL o HPIC O UHPIC OURPIC detector MS/MS/MS Allatonina G2 Highdo HPIC-FL o HPIC O UHPIC OURPIC detector MS/MS/MS Allatonina G2 Highdo HPIC-FL o HPIC O UHPIC OURPIC detector MS/MS/MS Allatonina G2 Highdo HPIC-FL o HPIC O UHPIC OURPIC detector MS/MS/MS Allatonina G2 Highdo HPIC-FL o HPIC O UHPIC OURPIC detector MS/MS/MS Allatonina G2 Highdo HPIC-FL o HPIC O UHPIC OURPIC OURPIC Detector MS/MS/MS Allatonina G2 Highdo HPIC-FL o HPIC O UHPIC OURPIC DETECTION LIMIT (detector MS/MS/MS/MS/MS/MS/MS/MS/MS/MS/MS/MS/MS/M